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Summary

The perfect bracket in the annual March Madness tournament is highly sought after
in the college basketball community. The March Madness modeling problem consists
of two main tasks: (1) developing a model to predict the winning team of a March
Madness match-up and (2) predicting the outcome of the March Madness tournament
(i.e. the full bracket).
To model the winning team of any March Madness match-up, we developed a Strength
Index Model which incorporates key statistics of a basketball team such as point differentials
and historical wins and losses. We decided to use a probabilistic approach in modeling
the strength indices of each team to introduce a component of randomness by treating
each team’s ability as a normally distributed random variable. Thus, we could model
probability distributions of a team’s performance in any given matchup.
After we assigned a Strength Index distribution to each team, we applied the Bradley-Terry
Model, which allows for predictions of winners in two-team match-ups based on an ability
score for each team. To model luck, we followed a method where samples were taken
from strength distributions to model game outcomes. To simulate an entire March
Madness tournament, we created an iterative method to update strength indices based
on a team’s performance in each round.
After we constructed our model, we ran a statistical analysis on the historical data
of each basketball team in the 2024 March Madness tournament, which allowed us to
calculate a strength index for each team. Our results show that a team’s strength index
is highly correlated with a team’s NCAA-designated seed.
After running 100+ simulations of March Madness tournaments based on our iterative
model, we converged to an expected solution that predicts 80% of all matches correctly,
which is better than the baseline average of 66% by the average human and 77%
for machine learning techniques in the literature. Our model successfully predicted
several upset games, where a team of worse strength beats a team of projected greater
strength. Furthermore, our model successfully projected both finalist teams, as well
as the result (UConn winning over Purdue). We further analyzed the output variance
across simulations, showing that teams with higher seeds and strength indices tend to
place higher.
Lastly, to test the validity of our model, we employed a Monte Carlo sampling simulation
(±10% variation of parameters, 4,000 total simulations) and a sensitivity analysis of
parameters such as team strength (skill) and variance (luck), which revealed that
variance significantly impacts the number of projected upsets in a tournament.
Although there exist shortcomings primarily due to the lack of data and the naturally
unpredictable nature of March Madness, our probabilistic model thoroughly predicts
March Madness outcomes and is easily adaptable to small amounts of data.
Keywords: March Madness, statistical analysis, Bradley-Terry model, point differentials,
variance, Monte Carlo simulation
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1 Introduction

1.1 Background
The March Madness Tournament is the NCAA’s annual Division 1 college men’s basketball

tournament. The tournament begins with 68 qualifying collegiate teams, which have been
ranked, or seeded, based on their performance during the season leading up to the tournament [1].
The tournament itself uses a single-elimination format, meaning if a team loses in its bracket,
it is automatically eliminated. Therefore, the national champion title is highly contested, as
March Madness is one of the biggest annual sporting events in the USA.

It is notoriously difficult to predict March Madness brackets and outcomes for an upcoming
year. When someone correctly predicts the outcome of every game in the entire tournament, it is
deemed a "perfect bracket." It is so difficult to construct a perfect bracket (P(Perfect Bracket) =
1 in 9.2 quintillion that Warren Buffet offered a $1 billion prize to any perfect bracket predictor
[4]. See Figure 1 for an example bracket.

When predicting March Madness brackets, it is necessary to understand some basketball
vernacular. In particular, sports analytics firms and enthusiasts predict March Madness brackets
with historical statistics of college teams. Predicting brackets is so popular that the discipline
coined a new term, "bracketology." Some of the most common statistics of these teams are:

• Point differential – total points scored minus points allowed [2].

• Historical win rate – the win rate of a team against historical teams over the past year
during the regular season.

• Team seed – the starting "seed" of a school’s team is determined by the NCAA committee
based on a variety of factors, and greatly affects their starting matchup [16].

However, the tournament has a great reputation for unpredictability, with lower-seeded teams
often upsetting higher-seeded teams. Using the NCAA’s definition of an upset, in which the
winning team was seeded at least five seed lines worse than the losing team, there have been
an average of 8.5 upsets per year the tournament has been held [6, 15]. As such, predicting the
outcomes of even an individual game is extremely challenging. Thus, understanding the impact
of skill and luck on a team’s performance is key to more accurately predicting future game and
tournament outcomes.
1.2 Problem Restatement

The problem presented has the following requirements:

1. Construct a mathematical model that predicts the winning team based on a combination
of luck and skill-based factors.

2. Analyze the historical margins of victory and evaluate whether it impacts model predictions
of game outcomes.

3. Use the developed mathematical model to predict the outcome of the 2024 March Madness
Tournament.

After developing and testing the model, we are asked to present our findings to two audiences:

1. Write a technical report to explain the model and findings to our newspaper’s analytics
team.

2. Write a one-page letter to the newspaper’s chief editor, explaining our report’s main results
and findings that can be shared with basketball fans reading the newspaper.
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Figure 1: March Madness bracket for 2024. An example March Madness
bracket.

2 Modeling March Madness Brackets

2.1 Problem Analysis
Part 1 of the problem tasks us with building a mathematical model that predicts the winning

team from a basketball game of two teams in March Madness based on luck and skill-based
factors. To accurately reflect the skill of a college basketball team in our model, we considered
several major factors directly associated with game performance as described in the background
section.

Since predicting winning teams aligns closely with estimating the probability of one team
beating another, we use a probabilistic approach to model initial team strength before March
Madness.
2.2 Assumptions

# Assumption Justification

1 Historical data is a good
predictor of the future.

To predict the future performance of a team, we must use
historical data to provide an estimate of a team’s strength
[17].

2 Luck is modeled by variance. To account for luck, a team’s strength (probability of
winning) is modeled by a random variable.

3 A team’s strength can
be modeled as a random
variable.

This allows us to simplify a team’s ability to a probability
distribution, which can therefore be more easily compared
with other teams.

4 A March Madness bracket
has 64 teams

This assumption helps simplify our simulation such that
it is a perfect 64-team bracket.

5 A team’s luck (variance) is
round-independent.

To sample from a team’s ability in a given round, we
assume variance stays constant [6, 15].

2.3 Brief Overview
Below is a table of variables used throughout our model.
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Variable Symbol Description

Round t Each round is either 1, 2, . . . in the March Madness bracket.
Strength Index θi,t The strength index random variable for team i at round t.

2.4 Strength Index
This section rests upon Assumption 1—that historical performance in basketball is a good

predictor of future performance. We can use game data from the regular season to predict
performance in the March Madness tournament. The problem statement also encouraged us
to incorporate the margin of victory as a primary consideration in our model, especially when
attempting to differentiate between skill and luck.

Accordingly, we used the Point Differential statistic in regular season games as a central
consideration when determining our initial strength index. The formula for calculating Point
Differential is shown in Equation 1.

Point Differential (PD) = Points Scored (PS) - Points Allowed (PA) (1)

In essence, Point Differential (PD) captures the net scoring ability of a team, factoring in
both offensive and defensive performance without the need for more granular data. A team
with a high Point Differential has demonstrated both the ability to score and the capacity
to prevent opponents from scoring, signaling superior overall performance. This measure is a
stronger indicator of team strength than just win-loss records, as it accounts for the margin by
which teams win or lose games, offering a clearer picture of a team’s potential for success in the
high-stakes environment of the March Madness tournament [7].

However, only calculating point differential as a total across the season would not be sufficient;
it would fail to account for the fact that we are aiming to predict the outcome of a single
basketball game. There is naturally some variance involved in each game’s outcome, and a
team’s performance can fluctuate due to a variety of luck-based factors. To better capture this
variance (see Assumption 2), we investigated the mean and standard deviation of both points
scored per game (PS) and points allowed per game (PA) for each team i throughout the regular
season.

PAi ∼ N(µPA, σ2
PA)

PSi ∼ N(µPS, σ2
PS)

Next, we assumed that PS and PA for each team follow a normal distribution based on the
past year of data by the Law of Large Numbers. This assumption is reasonable provided that
teams play a large number of games in the regular season (almost always above 30, for each
team).

In a single game, by definition, some team i wins if their point differential is positive. This
only happens when they score more points than they allow: that is, PSi > PAi, or PSi −PAi >
0. Therefore, we can rewrite this as

N(µPS, σ2
PS) − N(µPA, σ2

PA) > 0

In this case, our pooled standard deviation would be
√

σ2
P S + σ2

P A. Then, a team wins a game if

N(µP D, σ2
P S + σ2

P A) > 0

Let θi,0 be the initial Strength Index distribution for team i in round 0 of a March Madness
tournament. Then, from our previous conclusions, we have
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θi,0 = P
(
N(µP D, σ2

P S + σ2
P A) > 0

)
(2)

where θi is the calculated likelihood of team i winning any given game.
Due to the complexity of finding a confidence interval for θi analytically, we obtain a variance

estimate by sampling. See examples of these strength distributions for different teams in Figure 2.
To solidify our claims that our strength index is a good measure of team ability (Equation 2),

we obtain a Pearson Correlation coefficient of ρ = −0.625 when measuring the relationship
between our determined strength index and NCAA’s pre-determined seed-based ranking system.
This proves that our initial strength estimations are closely in line with the industry standard
measurement of a team’s strength.

 𝜽𝒊,𝟎

 𝜽𝒊,𝟎

Figure 2: Example initial strength index distributions.

In summary, we use team statistics to approximate a probability distribution for each team’s
strength, as shown in Figure 3.

𝜃𝑥 ~ 𝑁(𝜇, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒𝑑
2)

Figure 3: Method to calculate initial team strengths pre-bracket.

2.5 Bradley-Terry Model
Provided that we have just calculated the initial strength index distributions for each team

at round 0 of March Madness, θi,t=0, we want to measure two main processes:

a. How can the strength index distributions be used to predict a winning team?
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b. How can we model the change in strength of a team over time?

Note that strength indices for each team are probability distributions, and we will sample
from these distributions rather than comparing expected values to simulate the "luck" part of
March Madness games. Therefore, teams with strength indices with greater variance tend to
have a greater chance of good and bad luck in their games.

To address part (a), we want to identify a method to compare two strength indices, say θx,t

and θy,t for teams x, y respectively on round t. By the Bradley-Terry model, which is most
commonly used for predicting sports game outcomes and comparing the strength of two teams,
we can express the following [9].

P(x beats y at round t) := exp(θx,t)
exp(θx,t) + exp(θy,t)

(3)

In the original Bradley-Terry model, for rating systems with ELO scores (elo ∈ [0, 400]), it
is defined that for players i, j, the probability that player i can beat player j is

P(i > j) =
exp( eloi

400 )
exp( eloi

400 ) + exp( eloj

400 )
Intuitively, the Bradley-Terry model is a ratio between the strength of a team x and the

combined strength of teams in their match-up [3]. This is ideal for modeling projected win
percentages because

P(x beats y at round t) + P(y beats x at round t) = exp(θx,t) + exp(θy,t)
exp(θx,t) + exp(θy,t)

= 1

In deriving this model, we altered the original Bradley-Terry model (Equation 3) since our
strength index is scaled such that θi,t ∈ [0, 1], so we do not have to scale our indices [10].

We use an exponential transformation of each strength index in the Bradley-Terry equation
to allow for a greater probability of "upsets" in later rounds. See the model application and
sensitivity analysis sections as follows for details [10].

To simulate an outcome of a game between x and y on round t, we must sample from θx,t

and θy,t which would give us a single sample of the probability. In our Bradley-Terry model, we
sample from the distributions rather than calculating the expected value to preserve the "luck"
aspect of modeling game outcomes.

Once obtaining samples of θx,t and θy,t, we determine the winner of a game as the team with
a probability of winning greater than 0.5. Then, we iteratively update the strength distribution
of the winner to be more relative to all teams in the previous round’s bracket. Without loss
of generality, assume team y won the bracket of x versus y. Then, we would recalculate the
winner’s strength index distribution’s mean in round t + 1 as

θy,t+1 = E [P (i beats j on round t) | i = y] (4)

where we assume variance of θi,t is time-independent according to Assumption 5. This
recalculation of strength indices is applied to every winning team of match-ups in round t
entering round t + 1. See Figure 4 for a visualization of this process for each single match-up.
We perform this recalculation step because we hope that it can address some faults of other
similar models, which are unable to adapt to new rounds and use inaccurate strength estimates.
[3, 8].
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𝜃𝑥

𝜃𝑦

ℙ 𝑥 𝑦 𝑡

𝜽𝒊 ∀ 𝐭𝐞𝐚𝐦𝐬 𝒊

𝜃𝑖,𝑡+1 = 𝔼[ℙ 𝑖 𝑗 𝑡)]
𝑡

Figure 4: Overview process of predicting a single March Madness bracket.

2.6 Example Bracket
Example: Simple 4-Team Bracket

In this example, we annotate a 4-team bracket to illustrate how our model can iteratively
update and project winning teams in a bracket system.

𝜃𝑎,1~N(0.81, 0.052)

𝜃𝑏,1~N(0.69, 0.062)

ℙ 𝑎 𝑏 0

=
𝑒0.71

𝑒0.71+𝑒0.72 =

𝜽𝒃

𝜃𝑏,2 =
ℙ(𝑏 > 𝑎) + ℙ 𝑏 > 𝑐 ℙ 𝑏 > 𝑑

3
 = 0.515 ~ 𝑁(0.515, 0.062

θb,0

θa

𝜃𝑐,1~N(0.74, 0.082)

𝜃𝑑,1~N(0.60, 0.072)

ℙ 𝑐 𝑑 0

=
𝑒0.76

𝑒0.76+𝑒0.50 = 0.560

𝜽𝒄

𝜃𝑏,2 =
ℙ(𝑐 > 𝑎) + ℙ 𝑐 > 𝑏 ℙ 𝑐 > 𝑑

3
 = 0.527 ~ 𝑁(0.527, 0.082

θd

θc,0

θb,1

θc,1

ℙ 𝑏 𝑐 1

=
𝑒0.52

𝑒0.52+𝑒0.51 =

We approach this example in several steps:

1. Calculate initial strength indices for each team.

2. Sample from each strength index distribution, and use the sampled value in the
Bradley-Terry model to calculate the probability of winning for each team. This
accounts for the luck-based factor based on each distribution’s unique variance.

3. Advance teams with the probability of winning greater than 0.5 (Clemson, UIUC).
Recalculate strength indices for these teams.

4. Repeat steps 2-3 until the bracket is filled.

One key takeaway from this example scenario is that as rounds continue, the strength
indices converge towards 0.5, modeling greater uncertainty in predicting matchups in
higher rounds. For the actual model, we run the same process on 64 teams. Each run is a
single simulation, and we run multiple simulations to measure the variance of placements
and expected outcomes.
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3 Application of March Madness Model

To apply our March Madness model to the 2024 bracket, we must first obtain each team’s
starting θi,0 strength index distribution. Following the procedure as derived above, we arrive
at θi,0 values as shown below for each of the participating 64 teams in March Madness (see
Assumption 4). The data provided on historical wins and losses was used to obtain these values.
3.1 2024 Bracket Prediction

Based on each of the strength indices, we pre-load the bracket with the initial 64 teams
and their positions in the elimination bracket. See Figure 11 in the Appendix for the strength
distribution calculations for the first round.

Since in every simulation, we sample only once from each strength index distribution in every
match-up to determine the winner, we must simulate every match-up numerous times (or use
the expected value) to extract the most common filled-out bracket for the 64-team elimination.

After 100 simulations, we arrived at the following full bracket as the converged prediction,
provided that we only knew information for first-round match-ups.
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Figure 5: Converged prediction to 2024 March Madness. The most common
bracket after 100 simulation runs.

To answer the question of how our model performs on single match-ups, below is a distribution
of how many "first-round" match-ups we correctly predicted over the 100 simulations. Our
model boasts an 80.4% overall accuracy for the entire bracket (see Figure 6), counting
correct positions as correct placements in each bracket. Compared with the NCAA’s calculated
average for bracket accuracy (66.7% [14]) based on people who submit brackets and machine
learning techniques from the literature (77% [5]), our model outperforms other bracket-prediction
methodologies. Furthermore, we can provide a richer analysis of our model’s variance and ability
to predict on a round-by-round basis as discussed below.

On the other hand, significant room exists for improvement (currently 70% accuracy) in
predictions for first-round match-ups, which most bracketology experts claim have the least
variability [6]. Intuitively, improving first-round match-up predictions can significantly improve
future-round predictions, since incorrect answers will carry over into subsequent match predictions.
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Figure 6: Proportion correct for predictions in each round.

3.2 Predicting "Upsets"
What is more interesting is simulating and identifying the most probable "upsets" in match-ups.

In our model, we define an upset as a game won by a team with a lower strength distribution
mean compared to another team, regardless of the strength we sampled from both distributions.

From the previous 100 simulations, below is a visualization of the most probable Round 1
upsets of the 2024 March Madness tournament. The following figure (Figure 7) shows the most
probable upsets.

Figure 7: Most common "upset" match-ups in simulation. Of 100 simulations
run, these most common upsets were found.
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The most common upsets from our simulation reflect the actual outcomes of the matches
from March Madness. The most frequent upsets in the simulation resulted from games where
two teams had similar mean strength evaluations and sufficiently large standard deviations in
their normal distributions, causing the lower-strength team to often perform at a higher level
than the higher-strength team based on our definition of "luck."

The games that were projected to have the most probable upsets had very close scores in
their actual games in 2024. In Figure 7, we list the scores of games in 2024 with the most
probable upsets and the corresponding match-up.

We also want to examine the variability of the outcome placements of the top 10 seeded
teams across our 100 simulations. We examine the top 10 seeded teams (Figure 8) because they
are most commonly found in the highest placements by the end of the tournament. Note that
we can also easily expand this examination to any top X seeds.

Figure 8: Box-whisker plots of highest round reached by top 10 seeded teams.
Of 100 simulations run, these plots measure the variance in final placements (highest
round passed).

Figure 8 follows our expectations of performance, where UConn and North Carolina (UNC)
have the greatest mean of the highest round passed and Iowa State has the greatest variance in
performance [12, 13, 11]. Given that UConn and UNC were both seeded first in their respective
regions and often had decisive matches (where their strengths were significantly greater than
their opponents’) for the first few rounds, it is expected that they would often reach the later
rounds of the tournament.

4 Model Discussion

4.1 Model Parameters
Below is a table of parameters we conducted a sensitivity analysis on.
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Parameter Symbol Description Default Values

Strength Mean µi Average of team i’s initial strength
distribution

Provided data.

Strength
Standard Dev

σi Standard deviation of team i’s initial
strength distribution

Provided data

4.2 Sensitivity Analysis
To analyze the effect of altering initial conditions on potential match-up predictions and

bracket results, we employed a Monte Carlo simulation to test different initial strength indices
and measure the change in potential placements for the overall top 10 seeded teams. The top 10
seeds (out of 64 teams) generally place highest and have some of the highest strength ratings. As
such, we seek to examine how variations in "skill" and "luck" levels could contribute to a team’s
overall performance, with results being clearest for teams that often dominate the tournament.
Note that the methods we employ below can be extended to the rest of the teams.

To precisely determine how variations in a team’s skill and luck affect their performance in the
tournament brackets, for each Top 10 seeded team, we simulated brackets while only changing
either the mean or standard deviation of one specific team. This would allow our results to
clearly reflect the change in performance, which would be confounded if the other 9 teams also
had varied performances in the same simulation. Thus, for each of the Top 10 teams, each of the
following variations was implemented and the distribution of placements over 100 simulations
was recorded: up to 10% increase in mean strength, up to 10% decrease in mean strength, up to
50% increase in strength variance, and up to 50% decrease in strength variance. Since variance
typically has less of an impact on final-round placements, we test a greater change.

In essence, the goal of this sensitivity analysis is to uncover how a team’s initial strength and
luck-based variance affect its ability to make it past later rounds.

Since we are running a Monte Carlo simulation for each of the top 10 seeded teams, with
four possible scenarios (increase mean, decrease mean, increase variance, decrease variance), we
run a total of 4000 simulations to examine the sensitivity of our model.

Figure 9: Sensitivity of highest round reached by top 10 seeded teams based
on changes in mean. Monte Carlo simulation run by varying strength index mean
of each of top 10 teams by up to ±[0, 10]%.

As shown in Figure 9, a relatively small increase in mean initial strength for each of the
Top 10 teams led to an overall increase in how often they reached the later rounds of the
tournament. Conversely, a decrease in initial strength, even if by a small margin, led to overall
worse performances and less consistency in reaching the final rounds. This aligns with our
expectations that a team’s strength should correlate with its final placement.

As expected in Figure 10, an increase in initial strength variance for each of the top 10 seeded
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Figure 10: Sensitivity of highest round reached by top 10 seeded teams based
on changes in variance. Monte Carlo simulation run by varying strength index
variance of each of top 10 teams by up to ±[0, 50]%.

teams increased the variance of final-round placements. The opposite holds when the variance
of initial strength estimates decreases. This means that when teams are considered to be more
"lucky", they have greater chances of getting knocked out early or staying in later rounds.
4.3 Strengths

1. Our model’s main strength is its ability to model the random nature of luck.

By treating team strengths as random variables, the model acknowledges that
a team’s performance in a given game is not solely determined by its average
ability but also by stochastic factors such as injuries, refereeing decisions, and
unexpected hot or cold streaks. This stochastic nature is incorporated into the
model by sampling from the strength index distributions for each team before
applying the Bradley-Terry model to predict the outcome. As a result, the model
can better account for the possibility of upsets and unexpected outcomes, which
are common occurrences in March Madness.

2. Our model allows a team’s strength to vary over time.

This allows for a higher probability of upsets in later rounds, as teams that have
exceeded expectations in earlier stages can have their strengths reevaluated to
better align with their current performance. Furthermore, it aligns more closely
with the inherent randomness and unpredictability of sports like basketball.

3. Our model only requires a few key statistics and features about each team’s performance
to produce game predictions.

This allows our model to represent a complex scenario with relatively few requirements
in available data, making it more accessible to the user and easily applicable to
other March Madness and basketball tournaments. We mainly utilize the points
won and points lost data to generate our strength index.

4.4 Limitations
1. A single strength index distribution may not capture all nuances of a team’s ability and

luck.

While the model effectively captures the randomness and luck inherent in sports,
a potential limitation lies in the use of a single strength index distribution for
each team. For instance, a team’s strength might vary depending on specific
match-ups, home-court advantage, recent momentum, or public opinion. Additionally,
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normal distributions may not accurately represent the potential for extreme
outliers or unexpected upsets well, which can significantly impact tournament
outcomes.

2. Converging winning probabilities to 0.5 in later rounds makes it difficult to estimate
far-in-the-future games.

As teams advance through the tournament and their strengths are updated, the
winning probabilities between any two teams tend to converge towards 0.5. This
means that as the tournament progresses, the model becomes less confident
in predicting the outcomes of future games. This limitation arises because
of the model’s updating mechanism. While effective in capturing short-term
fluctuations in team strength, the model may not adequately account for the
long-term implications of early-round upsets or dominant performances. As a
result, the model’s predictive power diminishes for games that are further into
the future.

4.5 Future Work
Beyond the scope of this paper, we intend to create an improved model by simulating not

just the 64 teams in the bracket, but also the First Four games determining the 16th seed
spots in each region. Furthermore, exploring more features, such as individual player and team
statistics, as measures of the strength of a team may improve the accuracy of our predictions.
Lastly, a potential improvement to our model is to measure luck across different rounds, as
variance estimates may change over time for a team’s strength.

5 Conclusion

In this paper, we began by constructing a mathematical model to predict March Madness game
outcomes based on skill and luck. To incorporate skill, our model began with a calculated
strength factor based on each team’s historical performance, including statistics such as point
differentials, past games won, and past games lost. To reflect luck in the actual games and
the tournament’s frequent upsets, we simulated random samples from each team’s strength
distribution. Using each team’s calculated strength grades, the outcome of a game was decided
by whose sampled strength, representing the team’s performance level, was higher.

After developing the model, we tested its performance on the 2024 March Madness bracket.
By employing a Monte Carlo simulation of the model’s projections of each game in the tournament,
we found its overall average accuracy to be around 80%, with a success rate of around 70% for
the first round. Thus, the model’s ability to account for upsets demonstrates its robustness and
adaptability.
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7 Appendices

7.1 Appendix 1: Simulation code
./marchmadness.py

1 import numpy as np
2 import math
3 import random
4 import warnings
5 import copy
6 import json
7
8 warnings.filterwarnings('ignore')
9

10 class TeamWR:
11 """
12 A class that represents a team's average and stddev in win rate,

or "strength"
13 and simulating its performance in a given game.
14 """
15 name = ""
16 seed = 1
17 regional_seed = 1
18 mean = 0.5
19 stddev = 0.1
20
21 # Instance attribute
22 def __init__(self, name, seed, regional_seed, mean, stddev):
23 self.name = name
24 self.seed = seed
25 self.regional_seed = regional_seed
26 self.mean = mean
27 self.stddev = stddev
28
29 def update_mean(self, mean):
30 self.mean = mean
31
32 def update_stddev(self, stddev):
33 self.stddev = stddev
34
35 def sample_wr(self):
36 return np.random.normal(loc=self.mean, scale=self.stddev,

size=1)
37
38 def equals(self, other_team):
39 if (self.name == other_team.name) and (self.seed ==

other_team.seed) and (self.mean == other_team.mean) and
(self.stddev == other_team.stddev):

40 return True
41 else:
42 return False
43
44 def update_wr(team_1_wr, other_wr):
45 """Given a team's win rate and the win rates of the other teams,
46 returns the new average win rate for the team."""
47 avg_wr = 0
48 for team_wr in other_wr:
49 avg_wr += (math.exp(team_1_wr) / (math.exp(team_1_wr) +

math.exp(team_wr)))
50 return avg_wr / len(other_wr)
51
52 def simulate_round(teams_list):
53 """Given a list of teams (TeamWR objects), updates each team's

mean win rate
54 based on the Bradley Terry model. Returns a dictionary of the

winning teams and upsets."""
55
56 # Sampled strength
57 sim_wrs = []
58 for team in teams_list:
59 sim_wrs.append(team.sample_wr())
60 #print(sim_wrs)
61 # Simulate bracket for winners and upsets
62 bracket_results = winners_list(teams_list, sim_wrs)
63 for i in range(len(teams_list)):
64 other_teams = []
65 # Gets sample strengths of other teams
66 for j in range(len(teams_list)):
67 if j != i:
68 other_teams.append(sim_wrs[j])
69 teams_list[i].update_mean(update_wr(sim_wrs[i], other_teams))
70 return bracket_results
71
72 def winners_list(teams_list, sim_wrs):
73 """Returns a dictionary of winners and upsets for a list of teams

playing each other"""
74 results = {
75 "winners": [],
76 "upsets": []
77 }
78 # To second-to-last index to avoid out-of-bounds
79 for i in range(len(teams_list) - 1):
80 # First team in each pair matchup, assuming first team in

list plays second team, etc.
81 curr_team = teams_list[i]

82 opp_team = teams_list[i + 1]
83 if i % 2 == 0:
84 # 1 and 2 always win against 15 and 16 in region
85 if (int(curr_team.regional_seed / 100) ==

int(opp_team.regional_seed / 100)) and
((int(curr_team.regional_seed % 100) == 1 and
int(opp_team.regional_seed % 100) == 16) or
(int(curr_team.regional_seed % 100) == 2 and
int(opp_team.regional_seed % 100) == 15)):

86 results["winners"].append(curr_team)
87 else:
88 win_chance = math.exp(sim_wrs[i]) /

(math.exp(sim_wrs[i]) + math.exp(sim_wrs[i + 1]))
89 # If win chance is over 50%, the current team wins,

otherwise the opposing team wins
90 if win_chance > 0.5:
91 # Upsets happen if a team's mean strength is less

than its opponent's
92 if curr_team.mean < opp_team.mean:
93 results["upsets"].append(curr_team.name +

"(W) vs. " + opp_team.name)
94 results["winners"].append(curr_team)
95 else:
96 if curr_team.mean > opp_team.mean:
97 results["upsets"].append(opp_team.name + "(W)

vs. " + curr_team.name)
98 results["winners"].append(opp_team)
99 return results

100
101 def simulate_100_rounds(teams_list):
102 """Simulates 100 rounds, tracking the number of upsets"""
103 upsets = 0
104 upsets_dict = {}
105
106 for i in range(100):
107 sim_wrs = []
108 for team in teams_list:
109 sim_wrs.append(team.sample_wr())
110 sim_result = winners_list(teams_list, sim_wrs)
111 #(sim_result["upsets"])
112 upsets += len(sim_result["upsets"])
113 for upset in sim_result["upsets"]:
114 if upset in upsets_dict:
115 upsets_dict[upset] += 1
116 else:
117 upsets_dict[upset] = 1
118 return [upsets, upsets_dict]
119
120 def num_rounds(teams_list):
121 """Calculates the number of rounds to determine a winner in a

bracket"""
122 # Check if length is a power of 2 so there are a perfect integer

number of rounds
123
124 if (len(teams_list) & (len(teams_list) - 1)) == 0:
125 return int(math.log2(len(teams_list)))
126 else:
127 raise Exception("The number of teams should be a power of

2.")
128
129 def simulate_bracket(teams_list, rounds_left):
130 if rounds_left > 0:
131 #print("\nRound " + str(rounds_left))
132 # for i in teams_list:
133 # print(i.name)
134 round_result = simulate_round(teams_list)
135 return [round_result] +

simulate_bracket(round_result["winners"], rounds_left - 1)
136 else:
137 # print("\nRound 0")
138 # print(teams_list[0].name)
139 return []
140
141 # EAST-WEST-SOUTH-MIDWEST ORDER
142 east_bracket = [TeamWR("UConn", 1, 101, 0.877, 0.064),

TeamWR("Stetson", 64, 116, 0.601, 0.090), TeamWR("Fla Atlantic", 31,
108, 0.699, 0.064), TeamWR("Northwestern", 36, 109, 0.612, 0.084),

143 TeamWR("San Diego St", 18, 105, 0.733, 0.096), TeamWR("UAB", 50, 112,
0.542, 0.089), TeamWR("Auburn", 15, 104, 0.821, 0.071),
TeamWR("Yale", 52, 113, 0.717, 0.116),

144 TeamWR("BYU", 17, 106, 0.768, 0.058), TeamWR("Duquesne", 46, 111,
0.620, 0.097), TeamWR("Illinois", 12, 103, 0.738, 0.058),
TeamWR("Morehead St", 57, 114, 0.733, 0.091),

145 TeamWR("Washington St", 26, 107, 0.709, 0.070), TeamWR("Drake", 40,
110, 0.731, 0.090), TeamWR("Iowa St", 8, 102, 0.774, 0.090),
TeamWR("South Dakota St", 61, 115, 0.641, 0.083)]

146
147 west_bracket = [TeamWR("North Carolina", 4, 201, 0.762, 0.052),

TeamWR("Wagner", 68, 216, 0.525, 0.115), TeamWR("Mississippi St", 32,
208, 0.632, 0.045), TeamWR("Michigan St", 33, 209, 0.685, 0.110),
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148 TeamWR("Saint Mary's", 20, 205, 0.799, 0.058), TeamWR("Grand Canyon",
47, 212, 0.787, 0.058), TeamWR("Alabama", 16, 204, 0.7032, 0.058),
TeamWR("Charleston", 54, 213, 0.7028, 0.083),

149 TeamWR("Clemson", 22, 206, 0.688, 0.089), TeamWR("New Mexico", 42,
211, 0.768, 0.096), TeamWR("Baylor", 9, 203, 0.701, 0.090),
TeamWR("Colgate", 58, 214, 0.680, 0.070),

150 TeamWR("Dayton", 28, 207, 0.718, 0.070), TeamWR("Nevada", 37, 210,
0.731, 0.103), TeamWR("Arizona", 6, 202, 0.825, 0.070), TeamWR("Long
Beach St", 59, 215, 0.541, 0.083)]

151
152 south_bracket = [TeamWR("Houston", 2, 301, 0.871, 0.065),

TeamWR("Longwood", 63, 316, 0.674, 0.103), TeamWR("Nebraska", 29,
308, 0.678, 0.089), TeamWR("Texas A&M", 34, 309, 0.591, 0.103),

153 TeamWR("Wisconsin", 19, 305, 0.640, 0.064), TeamWR("James Madison",
48, 312, 0.796, 0.077), TeamWR("Duke", 13, 304, 0.835, 0.051),
TeamWR("Vermont", 51, 313, 0.752, 0.096),

154 TeamWR("Texas Tech", 23, 306, 0.660, 0.070), TeamWR("North Carolina
St", 45, 311, 0.570, 0.071), TeamWR("Kentucky", 11, 303, 0.703,
0.090), TeamWR("Oakland", 55, 314, 0.571, 0.104),

155 TeamWR("Florida", 25, 307, 0.670, 0.103), TeamWR("Colorado", 39, 310,
0.695, 0.077), TeamWR("Marquette", 7, 302, 0.740, 0.077),
TeamWR("Western Kentucky", 60, 315, 0.645, 0.070)]

156
157 midwest_bracket = [TeamWR("Purdue", 3, 401, 0.815, 0.051),

TeamWR("Grambling", 66, 416, 0.450, 0.096), TeamWR("Utah St", 30,
408, 0.725, 0.064), TeamWR("TCU", 35, 409, 0.681, 0.070),

158 TeamWR("Gonzaga", 21, 405, 0.832, 0.070), TeamWR("McNeese", 49, 412,
0.860, 0.064), TeamWR("Kansas", 14, 404, 0.683, 0.096),
TeamWR("Samford", 53, 413, 0.719, 0.070),

159 TeamWR("South Carolina", 24, 406, 0.662, 0.052), TeamWR("Oregon", 43,
411, 0.581, 0.097), TeamWR("Creighton", 10, 403, 0.729, 0.070),
TeamWR("Akron", 56, 414, 0.700, 0.083),

160 TeamWR("Texas", 27, 407, 0.671, 0.115), TeamWR("Colorado St", 44,
410, 0.716, 0.083), TeamWR("Tennessee", 5, 402, 0.769, 0.058),
TeamWR("Saint Peter's", 62, 415, 0.553, 0.097)]

161
162 entire_bracket = east_bracket + west_bracket + south_bracket +

midwest_bracket
163
164 # TEST ORDER
165 def test_brackets(east_bracket, actuals):
166 successes = []
167 for i in range(100):
168 sim_wrs = []
169 for team in east_bracket:
170 sim_wrs.append(team.sample_wr())
171 num_successful = 0
172 result = winners_list(east_bracket, sim_wrs)
173 for j in range(8):
174 #successes.append(result["winners"][j].name)
175 if actuals[j] == result["winners"][j].name:
176 num_successful += 1
177 successes.append(num_successful)
178 return sum(successes) / len(successes)
179
180 # FULL PREDICTION FOR 2024
181 simulate_bracket(entire_bracket, num_rounds(entire_bracket))
182
183 # Common Upsets for 1st Round
184 common_upsets = simulate_100_rounds(entire_bracket)[1]
185 sorted_upsets = dict(sorted(common_upsets.items(), key=lambda item:

item[1]))
186
187 # Top Seed Performance
188 def top_seed_performances(teams_list):
189 """
190 Simulates 100 brackets and tracks how many times each top-seeded

team reached specific rounds.
191 """
192 # Get the top 10 seeded teams
193 top_10_teams = sorted(teams_list, key=lambda team:

team.seed)[:10]
194
195 # Initialize result dictionary
196 rounds = [f"Round of {2 ** i}" for i in

range(num_rounds(teams_list))]
197 top_10_rounds = {team.name: {round_name: 0 for round_name in

rounds} for team in top_10_teams}
198
199 # Run 100 simulations
200 for _ in range(100): # Adjust the number of simulations if

needed
201 simulation_teams = teams_list.copy()
202 bracket_result = simulate_bracket(simulation_teams,

num_rounds(simulation_teams))
203
204 for team in top_10_teams:
205 # Track the rounds the team participated in
206 for round_index, bracket_round in

enumerate(bracket_result):
207 if team in bracket_round["winners"]:
208 round_name = f"Round of

{len(bracket_round['winners'])}"

209 top_10_rounds[team.name][round_name] += 1
210 else:
211 break # Team is eliminated
212
213 return top_10_rounds
214
215 top_performances = top_seed_performances(entire_bracket)
216
217 def top_seed_sensitivity(teams_list):
218 """
219 Simulates 100 brackets and tracks how many times each top-seeded

team reached specific rounds when
220 varying mean and stddev of their strength metrics
221 """
222 # Get the top 10 seeded teams
223 top_10_teams = sorted(teams_list, key=lambda team:

team.seed)[:10]
224 rounds = [f"Round {i + 1}" for i in

range(num_rounds(teams_list))]
225 sensitivity_results = {"Mean Inc": [], "Mean Dec": [], "StdDev

Inc": [], "StdDev Dec": []}
226
227 for top_team in top_10_teams:
228 # Initialize result dictionary
229 top_10_rounds = [
230 {top_team.name: {round_name: 0 for round_name in rounds}}
231 for _ in range(4)
232 ]
233
234 for _ in range(100): # Simulate 100 times
235 variations = {
236 "Mean Inc": copy.deepcopy(teams_list),
237 "Mean Dec": copy.deepcopy(teams_list),
238 "StdDev Inc": copy.deepcopy(teams_list),
239 "StdDev Dec": copy.deepcopy(teams_list),
240 }
241
242 # Apply variations to the top team
243 for index, team in enumerate(teams_list):
244 if team.equals(top_team):
245 variations["Mean

Inc"][index].update_mean(team.mean * (1 + 0.1 *
random.random()))

246 variations["Mean
Dec"][index].update_mean(team.mean * (1 - 0.1 *
random.random()))

247 variations["StdDev
Inc"][index].update_stddev(team.stddev * (1 + 0.5
* random.random()))

248 variations["StdDev
Dec"][index].update_stddev(team.stddev * (1 - 0.5
* random.random()))

249
250 # Simulate brackets for each variation
251 results = {
252 "Mean Inc": simulate_bracket(variations["Mean Inc"],

num_rounds(variations["Mean Inc"])),
253 "Mean Dec": simulate_bracket(variations["Mean Dec"],

num_rounds(variations["Mean Dec"])),
254 "StdDev Inc": simulate_bracket(variations["StdDev

Inc"], num_rounds(variations["StdDev Inc"])),
255 "StdDev Dec": simulate_bracket(variations["StdDev

Dec"], num_rounds(variations["StdDev Dec"])),
256 }
257
258 # Track the maximum round reached by the team for each

simulation
259 for variation_index, (key, result) in

enumerate(results.items()):
260 max_round = 0
261 for round_index, bracket_round in enumerate(result):
262 if any(winner.name == top_team.name for winner in

bracket_round["winners"]):
263 max_round = round_index
264 else:
265 break
266 round_name = f"Round {max_round + 1}"
267

top_10_rounds[variation_index][top_team.name][round_name]
+= 1

268
269 # Append results for this team
270 sensitivity_results["Mean Inc"].append(top_10_rounds[0])
271 sensitivity_results["Mean Dec"].append(top_10_rounds[1])
272 sensitivity_results["StdDev Inc"].append(top_10_rounds[2])
273 sensitivity_results["StdDev Dec"].append(top_10_rounds[3])
274
275 return sensitivity_results
276
277 bracket_sensitivity = top_seed_sensitivity(entire_bracket)
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7.2 Appendix 2: Initial Strength Distributions (θi,0)

Figure 11: Distributions for each strength index for every team.
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7.3 Appendix 3: One-page letter to newspaper chief editor

BMCM Team 01 Consultancy

November 17, 2024
Chief Editor
The Daily Hoopster
3-Pointer Plaza, Suite 333
Free Throw Lane, Dunkville, BB 90210

Dear Chief Editor,

We are thrilled to share the latest findings from our model of the 2024 NCAA March Madness
tournament. Though we’ve sent the full technical report to your analytics team, we wanted to
give you a direct summary of our model and share some insights that your readers might be
interested in. Some key features of our paper up first:

1. Point Differential is All You Need – especially in the age of artificial intelligence, some
models are complex and computationally expensive, requiring millions of data points and
days’ worth of computation. With this model, we prove that we can predict game
outcomes with data as simple as “points scored” and “points allowed”

2. “Strength Index”, a Novel Measure – A central feature of our approach is the “Strength
Index”, a metric based primarily on the point differential. However, we also take into
account luck-based factors, acknowledging that basketball is a game of both luck and
skill.

3. Bracket Accuracy – Our model becomes more and more accurate over time, using new
information to update our odds after each round. In the final four and championship
game, we reached 100% accuracy!

As for interesting findings for a wider audience, we think your readers might be most interested
in our “common upsets” section. Here, we found that we were consistently able to forecast the
closest games as being a tossup—our 3 most common upsets were all games where the score
was neck-and-neck until the end. You’ll have to read the report to find out which games, and
we hope your readers will find it interesting enough in the format of an article!

Aside from that, your readers might also take some interest in using our model for their
bracket predictions. We know that, for example, NC State went on an unprecedented run as an
11th seed, tying the lowest seed to make it to the Final Four in March Madness so far. Our
model accounts for the fact that when teams achieve an upset, there’s a substantial chance
that it isn’t a fluke. When a team achieves an unlikely win, in our model, it is rewarded in the
following round. We hope the superfans in your reader base will feel validated in that way.

Thank you for this wonderful opportunity! We hope you enjoyed this summary of our technical
report and look forward to hearing back from your analytics team.

Warm regards,
BMCM Team 01


